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Vision without action is a daydream. Action without vision is a nightmare.

– Japanese proverb

The important thing is the diversity available on the Web.

– Tim Berners-Lee

When I see an adult on a bicycle, I do not despair for the future of the human race.

– H.G. Wells
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Abstract

Human action recognition in still images is a challenging task in computer vision. Ex-

isting action recognition systems require a large amount of highly annotated training

data. Acquiring such data is expensive and time consuming. Ideally, we would like

to take advantage of cheaper and more plentiful sources of weakly annotated images.

We present an action recognition model within the framework of latent stuctural sup-

port vector machines (LSVM) that can be trained on diverse data, i.e., data with

heterogeneous levels of annotation. We train our action model on a combination of

highly annotated images with person and object ground-truth and weakly labeled

images obtained from Google Images where only the action is known.

We experiment with two training algorithms for LSVMs – the convex-concave

procedure (CCCP) and self-paced learning (SPL) – and show that SPL takes better

advantage of additional weakly labeled data, outerperforming CCCP. Finally, we show

that our model achieves state-of-the-art performance on the task of action recognition

for two action classes on a challenging dataset.
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Chapter 1

Introduction

Action recognition is a crucial area of research in the development of intelligent com-

puter vision. A truly intelligent vision system must not only be capable of discerning

what entities (e.g., people, objects) are present in a scene, but also what actions

are being performed by and on those entities. To do so, it can take into account

contextual information, such as the location of the object being acted upon and the

location of the person performing the action. It must be capable of capturing the

relationships between these interrelated variables and reasoning about them robustly

in natural environments with high clutter and occlusion.

A model that adequately captures such a complex system will almost certainly be

sophisticated and nuanced. Therefore, it is desirable to fit the model to as large a

training set as possible. Obtaining a large amount of completely labeled data, how-

ever, is time-consuming and expensive. To this end, we would like to take advantage

of diverse data, i.e., datasets that include not only fully labeled data but also addi-

tional data of varying levels of annotation. To make use of this additional, partially

labeled data, we need to model the portions of the label that are potentially hidden

at training time. A good framework in which to do so is that of the latent support

vector machine (LSVM).

Using the LSVM framework, we construct a human action recognition model that

can detect the presence of 3 different action classes – riding bike, riding horse, and

using computer. Each action is associated with a specific object – bike, horse, and

1



CHAPTER 1. INTRODUCTION 2

computer monitor – and our model incorporates the presence of such objects and their

spatial relationship to the person conducting the action. We then experiment with

two state-of-the-art training algorithms for LSVMs, the Concave-Convex Procedure

(CCCP) and Self-Paced Learning (SPL), and compare results on the PASCAL Action

Classification dataset. Our results demonstrate the benefit of using a context-aware

model that takes advantage of diverse data, as well as the superiority of the SPL

algorithm.



Chapter 2

Related Work

Previous work on human action recognition has utilized a variety of data types, in-

cluding single image, video, and 3D motion-capture. In the domain of video and

motion-capture, many methods have applied motif discovery algorithms to time se-

ries data [13, 3, 1, 16]. Key issues here include identifying motifs in noisy data and

discovering, in an unsupervised fashion, characteristic motifs that are robust to vari-

ations in length, frequency, and spatial deformation. These methods vary in model

complexity. Wang, et al. 2009 [14] proposed a model that incorporates action as

a latent topic variable and uses a simple bag-of-words representation of features for

each image frame. Niebles, et al. 2008 [9] defined a more sophisticated hierarchical

model that incorporates the spatial relationship between human parts (pose detec-

tion) to classify objectless actions, such as waving and walking. These methods, of

course, require data to be gathered over time and each frame of the data must often

be painstakingly labeled with the location of objects and human parts. The human

brain, however, can discern actions without temporal data, given only single images,

and it is this more constricted setting that we choose to explore here.

In the domain of still-image action recognition, previous work has produced con-

textual models that attempt to model the relationship between various components

present in a scene. Rabinovich, et al. 2007 [10] defined a Conditional Markov Rankom

3



CHAPTER 2. RELATED WORK 4

field that models relationships between general scene entities, including but not lim-

ited to people and objects, in order to improve object detection and semantic im-

age segmentation. Other efforts specifically targeted at action recognition have con-

structed more sophisticated hierarchical models that explicitly incorporate object and

pose location. Karlinsky, et al. 2010 [7] defined a two-step approach that first detects

body parts and then extracts features from the region around the detected parts. The

spatial relationship of the features to their corresponding parts is taken into account

in the action inference.

Other works define unified models that reason jointly about action, human pose,

and object location. Gupta, et al. 2009 [5] proposed a Bayesian model over the

scene type, human pose, and object location. In particular, the spatial relationship

between human and object was modeled using shape context features that capture

the angle and distance between the two. Yao, et al. 2010 [15] presented a pictorial

structure model that simultaneously models human pose, object location, and action

detection on a dataset of six sports. The benefit obtained by using such contextual

methods is reciprocal; not only does pose and object context strengthen the accuracy

of the action detector, the explicit modeling of action leads to better object and pose

detection, as well.

A severe limitation of such approaches, however, is that the incorporation of a

wide range of contextual information requires finely annotated training data (e.g.,

bounding boxes for each object and for each human body part). Because such models

include many inter-correlated variables, a large amount of such data is needed. In

the present work, we present an action recognition model that can take advantage of

large amounts of weakly labeled data in addition to highly annotated data. Moreover,

because human pose is not a strong cue for the set of actions we consider (the pose

associated with riding a horse, for example, is very similar to that associated with

riding a bike), we propose a simpler human-object interaction model that is not reliant

on fine-grain human parts labels. The strength and robustness of such an approach

will be demonstrated by evaluating on a dataset that contains high levels of clutter

and occlusion in a natural setting where objects and humans vary greatly in size and

perspective.



Chapter 3

Background

3.1 Support Vector Machines

Given a data example with observed variables x ∈ Rd, we wish to classify the example

by assigning a label, y ∈ {−1, 1}. (By convention, y = 1 denotes a “positive” example

and y = −1, a “negative”.) A linear classifier is a predictor of the form:

ypred = sign(w⊤φ(x)) (3.1)

Here, w ∈ Rn parameterizes the classifier and φ : Rd → Rn is a feature function,

which maps the observed variables to a feature vector in Rn.

Training is the process of fitting the parameter vector w to a set of training

examples, typically by optimizing an objective function defined over the training

set. Let {xi, yi}
m
i=1 be a set of m training examples, each of which is comprised of

an observed data vector xi and a ground-truth label yi. A support vector machine

(SVM) is a linear classifier whose training procedure is

minimize
w

1

2
‖w‖22 +

C

m

m
∑

i=1

max(0, 1− yiw
⊤φ(xi)) (3.2)

The first term is a quadratic regularization term on w that prevents overfitting and

the second term is a convex upper-bound on the training set accuracy,
∑m

i=1 1{yi =

5



CHAPTER 3. BACKGROUND 6

sign(w⊤φ(xi))}. C is a meta-parameter that trades off the importance of the regu-

larization term against high training set accuracy.

The support vector machine is a powerful formalism used in many binary classifica-

tion applications in computer vision and machine learning, including object detection,

image segmentation, and spam filtering.

3.1.1 Geometric Margin

The support vector machine has an elegant geometric interpretation related to finding

the separating hyperplane with minimal geometric margin between the sets of positive

and negative training examples in the feature space. The separating hyperplane

is {x : w⊤x = 0}, and the geometric margin is the maximum distance that this

hyperplane can be translated in the direction w or −w before it touches a positive

or negative example. The minimum geometric margin problem can be formulated as

minimize
1

2
‖w‖22 (3.3)

subject to yiw
⊤φ(xi) ≥ 1, for i = 1, ..., m (3.4)

Note that this imposes the hard constraint that w define a hyperplane that separates

all positive examples from all negatives. This constraint can be relaxed to allow

violations in exchange for incurring a penalty in the objective. This relaxation yields

the following problem:

minimize
1

2
‖w‖22 +

C

m

m
∑

i=1

ξi (3.5)

subject to yiw
⊤φ(xi) ≥ 1− ξi for i = 1, ..., m (3.6)

ξi ≥ 0 for i = 1, ..., m (3.7)

Here, the ξi’s (also known as slack variables) define the penalty incurred by each

example for violating the margin constraint yiw
⊤φ(xi) ≥ 1. This is known as the

L1 soft-margin formulation of the SVM and is equivalent to the unconstrained SVM

problem given in Eq. (3.2). The geometric intuition provided by this perspective of
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SVMs will become important in the discussion of structural and latent SVMs in the

sequel.

3.2 Structural SVM

The structural support vector machine (SSVM) is a generalization of the standard

binary support vector machine to multidimensional output spaces, where the label,

y, is a vector whose elements can be discrete- or even continuous-valued. Within the

SSVM framework, we have a linear predictor of the form:

ypred = argmax
y

w⊤ψ(x,y) (3.8)

As in the binary SVM case, x is the observed data vector. Note that the feature

function, ψ, is now a function of both x and y, rather than of x alone. The expression

−w⊤ψ(x,y) is sometimes called the energy of the label y, and the inference process

defined above is known as energy minimization or MAP inference.

The SSVM training objective is

minimize
1

2
‖w‖22 +

C

m

m
∑

i=1

[max
y

(∆(yi,y) +w⊤ψ(xi,y))−w⊤ψ(xi,yi)] (3.9)

Here, ∆(yi,y) is a loss function, which captures the penalty associated with misla-

beling yi as y. It must be nonnegative and satisfy the condition that the correct

labeling yields a penalty of zero, i.e., ∆(z, z) = 0, ∀z ∈ dom(y). The second term in

the objective (
∑m

i=1[maxy(∆(yi,y)+w⊤ψ(xi,y))−w⊤ψ(xi,yi)]) is a convex upper

bound on the total empirical loss over the training set (
∑m

i=1 ∆(yi,y
pred
i (w)), where

y
pred
i (w) = argmaxyw

⊤ψ(xi,y)). The overall SSVM training objective is convex

and there exist several efficient methods for solving it [6, 11, 12].

As in the case of the binary SVM, the SSVM can be reformulated to include
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constraints and slack variables. The training problem can be rewritten as

minimize
1

2
‖w‖22 +

C

m

m
∑

i=1

ξi (3.10)

subject to ξi ≥ max
y

(∆(yi,y) +w⊤ψ(xi,y))−w⊤ψ(xi,yi) (3.11)

As in the binary SVM case, ξi is the margin constraint violation penalty incurred by

each example in the training set. Note that each margin constraint (Eq. (3.11)) can

be rewritten as a set of linear constraints:

ξi ≥ (∆(yi,y) +w⊤ψ(xi,y))−w⊤ψ(xi,yi), ∀y ∈ dom(y) (3.12)

Clearly, there will always be (at least) one linear constraint for which this inequality

is tight (otherwise, we could reduce the objective by lowering ξi by a small amount).

The constraint for which the inequality is tight is also known as the “most violated

constraint” associated with example i. Computing the most violated constraint is a

crucial subroutine in learning the SSVM.

SSVM Learning

The formulation of the SSVM objective with linear constraints (Eq. (3.10), Eq. (3.12))

is an LP. However, the number of linear constraints is n| dom(y)|. This can be

intractably large, so instead the problem is typically treated in its unconstrained form

(Eq. (3.9)) and optimized using the cutting plane method described in Tsochantaridis,

et al. 2004 [12]. This cutting plane method exploits the sparsity and structure of the

problem to reduce the number of constraints needed to be considered. This method

requires us to specify how to compute the most violated constraint for each example,

which can be done using a procedure known as “loss-augmented inference”:

y
pred
i = argmax

y

w⊤ψ(x,y) + ∆(yi,y)

Note that this is identical to the standard inference procedure, except that we add

the loss into the inference objective.
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We will not delve into the particulars of this method here, but mention briefly

that the method operates by finding a series of cutting-planes that successively reduce

the set of potentially optimal values of w until this set is within ǫ of the solution.

At each iteration, the set of most violated constraints yields a subgradient, g, for the

objective function at the current value of w. The subgradient, in turn, defines the

cutting-plane for this iteration.

Relationship to binary SVM

The binary SVM can be written within the framework of the SSVM as follows:

y ∈ {−1, 1} (3.13)

∆(y, z) = 1{y 6= z} (3.14)

ψ(x,y) =







φ(x), y = 1

0, y = −1
(3.15)

3.3 Latent Structural SVM

Latent structural SVMs (LSVM) extend the SSVM framework to incorporate latent

(or hidden) variables. These variables comprise part of the label y and may not

be observed at training time. An immediate benefit of this extension is that it can

simplify relationships among the observed variables by allowing such relationships to

depend on the value of the hidden variable.

Additionally, the use of hidden variables enables the use of diverse data in training.

In the non-latent SSVM problem, it is assumed that each training instance is labeled

with the same level of annotation, encompassing the entire label vector y. In a

training set of diverse data, some types of annotation will be provided for all training

examples, but other types of annotation will be available for only a subset of training

examples. We can incorporate the sometimes-available annotations as latent variables

within the LSVM framework. The ability to incorporate diverse datasets into the

training regime is valuable, because it is often the case that only a small set of fully

annotated data is available (due to the time and/or expense of labeling such data). In
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contrast, there may be a much larger source of partially annotated data. We would

like to be able to make use of both the limited supply of fully annotated data as

well as the large amount of coarser annotations, and the LSVM framework elegantly

incorporates such diverse sources of data into a single, unified model.

In the LSVM framework, the inference procedure remains the same as before. At

training time, however, we decompose the label into two parts, y = (a,h). The

annotation, a, is the observed portion of the label at training time while the latent

variable h is the hidden portion. The training problem is:

minimize
1

2
‖w‖22+

C

m

m
∑

i=1

max
a,h

(∆(ai,a,h)+w⊤ψ(xi,a,h))−
C

m

m
∑

i=1

max
h
w⊤ψ(xi,ai,h)

(3.16)

As in the case of SSVMs, the LSVM training objective is an upper bound on the

empirical loss of the dataset,
∑m

i=1 ∆(ai,a
pred
i ,hpred

i ).

3.3.1 LSVM Learning via CCCP

Unlike the training problems of the binary SVM and structural SVM, the LSVM

training problem is not convex. Rather, the objective is the difference of two convex

functions. Because it is not convex, it is intractable to solve exactly. We can, however,

minimize a convex upper-bound on the objective by iteratively approximating the

concave portion of the objective with an affine expression and then optimizing the

resulting convex function.

This method is known as the concave-convex procedure (CCCP). Concretely, we

have an iterative algorithm with two alternating steps. The first step imputes the

latent variables given the ground-truth annotation of each training example, yielding

a complete label (y) for each example. The second step then solves a standard SSVM

problem, using the labels consisting of the ground-truth annotations and the imputed

latent variables. To use this method, we therefore have to specify two subroutines.

The first is the impute latent variable routine (h∗
i = argmaxh∈Hw

⊤ψ(xi,yi,h), where

H = dom(h)) and the second is the loss-augmented inference routine associated with

solving the standard SSVM. It can be shown that CCCP converges to a local minimum
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Algorithm 1 CCCP

Input: D = {(x1,y1), ..., (xn,yn)},w0, ǫ
1: t← 0
2: repeat

3: For each training example, i, set h∗
i = argmaxh∈Hw

⊤
t ψ(xi,yi,h).

4: Compute wt+1 by fixing the latent portion of yi to h∗
i and solving the corre-

sponding SSVM problem. In other words, set wt+1 to minimize Eq. (3.9).
5: t← t + 1
6: until objective function (Eq. (3.16)) cannot be decreased below tolerance ǫ.

or saddle-point of the objective [17].

3.3.2 LSVM Learning via Self-Paced Learning

CCCP approximately solves a non-convex problem by iteratively computing a convex

upper-bound of the objective and minimizing this bound. Like other methods that use

this approach (such as the well-known Expectation Maximization meta-algorithm),

CCCP is susceptible to converging to bad local minima. Previous work has sought to

address these issues in various ways. A common and straightforward approach is to

randomly initialize multiple runs of CCCP and choose the best solution out of these

[17]. However, this method is computationally expensive.

Bengio et al. [2] proposed an alternative method called curriculum learning. Cur-

riculum learning is inspired by the way humans are taught in school, in which easy

material is introduced first and only later are harder topics covered. Analogously,

curriculum learning chooses easy examples from the training set to fit the model pa-

rameters in initial iterations of the training procedure. In subsequent iterations, it

includes more and more of the training set until all examples are included and the

algorithm reaches convergence.

The main difficulty of curriculum learning is choosing and computing the metric

by which training examples are categorized as “easy” or “hard.” In basic applica-

tions, it may be straightforward for a human to produce these labels. In real-world

applications, however, there is usually no clear-cut distinction and even if there were,

it is likely the case that human intuition for what is facile or difficult is not the best
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metric to use.

Kumar et al. [8] proposed the framework of self-paced learning to address this

problem. In self-paced learning, the “hardness” of training example i is defined to

be the slack variable, ξi, associated with the example. When the slack variable is

zero, this means that the example is correctly classified with significant confidence

(thus, easy). When it is nonzero, this means that the example is either misclassified

or properly classified but close to the decision boundary (i.e., close enough to violate

the constraint 0 ≥ maxy(∆(yi,y)+w⊤ψ(xi,y))−w⊤ψ(xi,yi)). The slack is thus a

good measure of “hardness” from the classifier’s point of view. Using the slack as the

hardness score, we can classify examples as “easy” or “hard” (alternatively “valid”

or “invalid”) by comparing each example’s slack value against a chosen threshold.

With this metric in hand, the algorithm proceeds as follows. In the first step,

as before, the latent variables for each example are imputed. A hardness threshold,

which defines the criterion for categorizing examples as easy or hard, is then set. The

second step consists of an alternate convex search, which alternates between choosing

a valid set of examples (using the current hardness threshold) and then solving the

SSVM restricted to those examples. This iterates until convergence. Over time, the

hardness threshold is annealed, causing more and more examples to be included in

the valid set, until finally, all examples are included in the valid set (at which point,

the SPL iterations become equivalent to those of CCCP).

Algorithm 2 Self-paced learning (with slack as hardness metric)

Input: D = {(x1,y1), ..., (xn,yn)},w0, ǫ
1: t← 0, K ← K0

2: repeat

3: For each training example, i, set h∗
i = argmaxh∈Hw

⊤
t ψ(xi,yi,h).

4: Compute wt+1 using alternate convex search to solve the relaxed objective
1
2
‖w‖22+

C
m

∑m

i=1 viξi−
1
K

∑m

i=1 vi subject to the constraints of the regular SSVM
problem and v ∈ {0, 1}.

5: t← t + 1, K ← K/µ
6: until ∀i, vi = 1 and the objective function (Eq. (3.16)) cannot be decreased below

tolerance ǫ.
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Algorithm 3 Alternate Convex Search

Input: D = {(x1,y1), ..., (xn,yn)},w0, ǫ
1: repeat

2: For each training example, i, set vi =

{

0 ξi > 1
K

1 otherwise
.

3: Solve the SSVM over all examples with vi = 1.
4: until the objective, 1

2
‖w‖22 + C

m

∑m

i=1 viξi −
1
K

∑m

i=1 vi, has converged

Since the last iterations of self-paced learning are equivalent to CCCP, it is guar-

anteed that this method converges to a local saddle-point or minimum of the LSVM

training objective. In practice, to obtain a reasonable initial model for SPL, we can

initialize w by running 3 iterations of CCCP.



Chapter 4

Object Context Action

Recognition Model

4.1 Overview

We treat the problem as a one-versus-all binary classification problem. For each

action class, we train a classifier to detect the presence of that particular action,

treating instances of all other actions as negative examples. Alternatively, we could

have formulated the problem as a multi-class structural SVM. We choose the binary

formulation for several reasons. First, in the multiclass formulation, a fixed set of

action classes must be set prior to training. If the desired set of detectable actions

changes later, the classifier must be retrained. In the binary case, we simply need

to train additional binary classifiers if we wish to consider additional actions. Fur-

thermore, the multiclass formulation assumes that the actions are mutually exclusive.

While this assumption holds true for the Pascal data set, one can easily envision a

multitasking setting where one person performs multiple actions (phoning while rid-

ing a bike, for example). Related to this is the fact that we would like to output a

score indicating our confidence in the presence of each action class. This would allow

us to vary the decision criterion and compute a full precision-recall curve. In the

binary case, we can simply use the score outputted by the classifier for the positive

class. Since the score for the negative case is always zero, the score of the positive

14
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case can be used as a measure of confidence across all examples. In the multi-class

SSVM, however, the score does not lend itself to this interpretation. We only expect

that the score of the ground-truth action be greater than the score of all other actions

(assuming there is a single ground-truth action). Thus, there is no common reference

point, like the zero score negative case, that would allow us to calibrate scores across

different examples. Moreover, there is even less of a clear interpretation for the scores

of the lower-scoring action classes; the training objective places no constraint on the

ordering of the scores of the non-ground-truth actions.

Note, however, that even though we formulate the task of action detection as a

binary classification problem, we still cast our model as a (latent) structural SVM,

rather than a simple binary SVM. This is because the label, y, that the model out-

puts at inference time contains not only the binary action presence variable but also

additional (potentially hidden) variables, such as object and person location, that are

also part of the complete label.

4.2 Notation

For each action class, we define a LSVM model as follows. Each example is a potential

action instance, i.e., an instance of a person performing the action of interest. Let

x be the observed data gathered from the image and let y be the label we wish to

predict for this example. The label y indicates the presence or absence of the action

class associated with the model and, if the action is present, the location of the person

performing the action and the location of the object upon which the person is acting.

We denote the joint feature vector over x and y as ψ(x,y). The energy of a

predicted label y is equal to −w⊤ψ(x,y), where w parameterizes the model. The

best label is obtained by MAP inference, in which we minimize the energy over y to

obtain y∗ = arg maxyw
⊤ψ(x,y).

Let D = {(xi,ai)}
m
i=1 denote the training set, where xi is the observed variables

of the action instance and ai is the corresponding annotation given at training time.

In a fully supervised training regime, each training example is annotated with the

full label y (i.e., a = y). In the case of learning from diverse data, the training set
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is split into subsets, each of which has its own level of annotation. Note, however,

that the annotation a always indicates whether the example is positive or negative.

For each instance xi with annotation ai, we also specify a set of latent (or hidden)

variables hi such that (ai,hi) defines the label yi for the instance.

Let the loss function be ∆(ai,a,h). This captures the desired penalty associated

with assigning a training example the label (a,h) when the ground-truth annotation

is ai.

4.3 Model Definition

At inference time, the model associated with a particular action (riding bike, riding

horse, or using computer) is given an image and returns an indicator of whether or

not the action is present and (if the action is present) the locations of the person

and object that comprise the action and the type of the object (bicycle, motorbike1,

horse, or computer monitor). Various parts of the label may be given at inference

time (the PASCAL Action Classification Challenge, for example, specifies that the

location of the person is given). In this case, the model will make use of the given

information and infer the unknown remainder of the label.

We define the loss function to be the zero-one loss over the action presence:

∆(ai,a,h) =







1 if ai and a agree on the presence of the action

0 otherwise

Note that this means we do not incur a penalty if the action is predicted correctly,

even if the predicted object and/or person is incorrect.

We cast our model within the framework of the LSVM described above. We

define x, the observed data, to be the object and person detector scores at each

possible location in the image. In practice, we use an off-the-shelf sliding window

object detector to compute these scores for a comprehensive sample of bounding box

1The decision to have 2 object classes associated with riding a bike was due to the availability of
two separate object detectors for bicycle and motorbike
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locations at different scales. This yields a list of person and object candidates. Then,

for tractability reasons, we consider only the 10 highest-scoring person candidates

and the 2,000 highest-scoring object candidates.

The specific object detector used for both people and action objects in our experi-

ments was the deformable parts object detector from Felzenszwalb, et al. 2008 [4]. In

addition to outputting an object detection score, this detector also outputs auxiliary

scores, which we utilize in our model. These auxiliary scores exist because the de-

tector breaks each object class model into several different sub-models or components

and outputs a score for each component (the overall detection score is the max of the

component scores). The motivation behind doing so is that human-specified object

categories (e.g., “car”) can often be split into distinctive sub-categories (e.g., “car

from front,” “car from side”). Because these sub-categories are often very different

from each other in appearance, it makes sense to learn a separate model for each,

rather than burden a single model with the task of simultaneously recognizing all

of the sub-categories. In our action model, we include not only the overall person

detection score outputted by the object detector, but also the detection score associ-

ated with each of the person components. Intuitively, each person component will be

associated with a different person sub-category, which may correlate with pose (e.g.,

sitting versus riding), which in turn may correlate with different action classes (e.g., a

sitting pose is more consistent with using a computer than a riding pose). By default,

when the deformable parts detector is trained, each object component is initialized

using a subset of the training data based upon a clustering of the aspect ratio of the

ground-truth object bounding boxes. In addition to using the component scores from

this initialization, we can also initialize the components with training subsets based

on the ground-truth action. Note that the training data used to train the person

detector does not contain action annotations. Thus, we cannot directly partition the

person detector training set by action class. As a substitute, we compute the mean

person HOG descriptor for each action class over the action training data (for which

the action label is provided) and then cluster the person detector training data based

on the L2 distance from the mean person HOG descriptor of each action. Initializing

the components using these clusters, we retrain the person detector, and then use it
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1. Object score
2. Person score
3. Person component scores
4. Shape context
5. Relative size

Figure 4.1: List of features used in object-context model

to produce action-based component scores for each example.

Recall that the label y includes an indicator variable for the presence of the action

(1 for a positive example of the action of interest, -1 for a negative example). If the

action is present, then y also includes the person location, object type, and object

location of the action example2. Given y and x, we define a joint feature vector

ψ(x,y) that includes the features in Figure 4.1 in a quadratic kernel. These features

are described in more detail below:

1. The object score is the score outputted by the object detector for the object

class associated with the action of interest. This is the score for the object

detection at the location specified in y.

2. The person score is the score outputted by the person detector for the person

at the location specified in y.

3. The person component scores include both the aspect-ratio-based component

scores and the action-based component scores from the deformable parts person

detector. These provide a human-pose-based cue for the action class.

4. The shape context features consist of an indicator vector that indicates the

discretized relative angle and distance between person and object. There are

7 angle and 7 object bins (7 × 7 = 49 shape bins overall), and the indicator is

bilinearly interpolated (making it a soft indicator).

5. The relative size features consist of a soft (linearly interpolated) indicator vector

of the relative size of the object to the person, discretized into 7 bins.

2Note that object type is determined by action type.
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The last two sets of features capture the spatial relationship between person and

object. To compute the shape context vector, we first compute the angle, θ, between

the center of the person bounding box and the center of the object bounding box.

We then compute the relative distance, d, from the object to the person. This is

the raw pixel distance between the center of the two bounding boxes divided by the

square-root of the person bounding box area. The raw values of (θ, d) will fall into

one of 49 bins (7 for θ, 7 for d)3. We construct the (soft) indicator vector over these

bins, f ∈ R49, smoothing with bilinear interpolation. We apply the same method to

compute a soft indicator vector for relative size (discretized into 7 bins), which is the

ratio of object to person bounding box area.

4.4 Learning

4.4.1 Diverse Data

Our training set D = {(xi,ai)}
m
i=1 consists of action instances with 3 levels of annota-

tions, which we call “high,” “medium,” and “low.” In the high level, we have a = y.

In other words, we are given a bounding box around the person, the action label, a

bounding box around the object (if applicable), and the object type. For the medium

level, we have that a is the person location and action type, but the object remains

hidden. That is, h is the object location and type. In the low level of annotation, we

are given only an image and an action label indicating that the action is present in

the image. In this case h includes the person location as well as the object location

and type.

4.4.2 Imputing Latent Variables

The first step of both CCCP and SPL requires imputing the latent variables for the

set of training examples. Given the data and the annotation, we impute the latent

3Bin boundaries were determined by visualizing the values of (θ, d) over the training set on a 2D
scatter plot. The number of bins was determined via empirical cross-validation.
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variable to minimize the energy, i.e.,

h∗
i = max

h
w⊤ψ(xi,ai,h) (4.1)

For training examples with the high level of annotation (i.e., both the ground-truth

object and person are given), h is empty, so this step is trivial. Note that if all

training examples are annotated at this level, the training procedure reduces to that

of a standard (non-latent) structural SVM.

For training examples with medium annotation (i.e., the object is missing), we

generate a list of object candidates using the deformable parts object detector trained

on the 4 object classes. (Note that these object candidates never change, so we can

pre-compute and cache them for the duration of the entire training procedure.) To

produce h∗
i , we iterate through all candidates of the object type associated with the

action label specified by ai. For the low-annotation examples, we use the object

detector to generate a list of person candidates, as well. To produce h∗
i , we consider

every person-object candidate pair where the object is consistent with the action

label.

4.4.3 Most Violated Constraint

Having imputed the latent variables h, we must solve the resulting (non-latent) struc-

tural SVM. To do so, we must specify the loss-augmented inference procedure (i.e.,

compute the most violated constraint for each training example). Recall that the

standard constrained optimization problem associated with the SSVM with imputed

latent variables, h∗, is

minimize
1

2
‖w‖22 +

C

m

m
∑

i=1

ξi (4.2)

subject to ξi ≥

m
∑

i=1

∆(ai,a,h) +w⊤ψ(xi,a, bh)−w⊤ψ(xi,ai,h
∗
i ), ∀a,h (4.3)
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In most SSVM applications, the loss is non-zero if the label is incorrect. In our

case, however, the loss can be zero even if the object and person label are incor-

rect, as long as the action label is correct. In other words, we care only about

predicting the correct action label, rather than the complete label. The object

and person label are merely means to an end. Consequently, blindly optimizing

the vanilla SSVM training objective yields unwanted constraints. In particular, we

do not want to declare constraints over ξi associated with labels (a,h) for which

(a,h) 6= (ai,h
∗
i ) and action(a) = action(ai). That is, we do not care if the classifier

gets the object and person wrong, as long as it correctly predicts whether the action

is present or not. (Note that we still want the constraint for (a,h) = (ai,h
∗
i ), which

effectively ensures ξi ≥ 0.) Eliminating these constraints yields the following training

problem:

minimize
1

2
‖w‖22 +

C

m

m
∑

i=1

ξi (4.4)

subject to ξi ≥

m
∑

i=1

∆(ai,a,h) +w⊤ψ(xi,a,h)−w⊤ψ(xi,ai,h
∗
i ), (4.5)

∀a,h ∈ {ai,h
∗
i } ∪ {a,h : action(a) 6= action(ai)} (4.6)

As with the standard SSVM problem, we can rewrite this in unconstrained form

and optimize the unconstrained objective with the cutting-plane method described

in the Background chapter. This method requires specifying a procedure for finding

the most violated constraint for each training example, which we now describe. As

stated before, the most violated constraint can be computed using a loss-augmented

inference procedure. Given our modified set of constraints, this corresponds to the

following step:

(â, ĥ) := argmax
{ai,h

∗}∪{a,h:action(a)6=action(ai)}

(∆(ai,a,h) +w⊤ψ(xi,a,h)) (4.7)

In practice, we compute this argmax by searching over all person-object candidate

pairs in the image that are consistent with the annotation ai. This search yields a
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label ŷ = (â, ĥ), which is the label that generates the most violated constraint for

the training example.

4.4.4 Self-Paced Learning

Choosing valid examples

Recall that in the standard self-paced learning setting, each iteration (after latent

variables have been imputed) requires optimizing the objective

1

2
‖w‖22 +

C

m

m
∑

i=1

viξi −
1

K

m
∑

i=1

vi

Here, K is the self-paced learning weight, which controls how many training examples

are used to train the relaxed SSVM objective ((1/K)(C/m) is the slack threshold

below which examples are included, so a higher K means fewer examples will be

included). Note that this selection criterion looks only at the slack value of a training

example given the current model and is agnostic to the ground-truth annotation of

the training example. This setting is fine if each label is equally “hard” – that is,

if applying this threshold includes about an equal fraction of examples of each label

into the valid set. However, if one label is easier to classify than the other, then

applying this threshold will result in fitting the model exclusively to the “easy” labels

and ignoring the “hard” ones.

In our case, the two labels we wish to distinguish are the positive (action present)

and negative (action not present) cases. In practice, we found that the initial valid set

included exclusively negative examples, ultimately leading to convergence to a poor

local minimum (in which the accuracy of the model is high for negative examples but

low for positive examples, resulting in low average precision). To rectify this issue,

we maintain a separate threshold for each label class (that is, the selection criterion

is different for positive and negative examples). The new objective is

1

2
‖w‖22 +

C

m

m
∑

i=1

viξi −
1

Kneg

∑

i:neg

vi −
1

Kpos

∑

i:pos

vi
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We initialize these thresholds so that the initial valid set includes the same fraction of

positive and negative examples. In subsequent iterations, we anneal these thresholds

at the same rate, conducting the following update

Kneg := Kneg/µ

Kpos := Kpos/µ

4.5 Meta-parameters

The LSVM training procedure requires the following meta-parameters to be specified:

the slack penalty coefficient (C), the initial SPL weights (Kneg, Kpos), and the SPL

annealing factor (µ). Following the example of Kumar, et al. [8], we set the initial

SPL weights such that half of the positive and negative examples are included in the

initial SPL iteration. We set the annealing factor µ to 5.0, which yields a reasonable

convergence rate of the objective. Finally, we set C using cross-validation by training

a fully supervised model on the PASCAL training set (with object annotations) and

validating on the validation set.



Chapter 5

Results and Discussion

5.1 Data

The PASCAL VOC 2010 Action Classification dataset contains 908 images and 1,221

action instances, roughly evenly split across 9 action classes (phoning, playing an

instrument, reading, riding a bike, riding a horse, running, taking a photo, using a

computer, and walking). The set is partitioned into a test set of 454 images that

contain 613 action instances, a training set of 226 images containing 301 action in-

stances, and a validation set of 228 images with 307 action instances. The images

contain a high amount of clutter and occlusion, as well as a high variance in setting

and point of view. These attributes make the dataset particularly challenging.

In addition, we also incorporate the use of 130 weakly labeled images obtained

from Google Image Search. These images are labeled only with the action present

(i.e., no person and no object location). There are 26 weak images of riding bicycle,

35 of riding horse, 32 of running, and 37 of walking. (Note that there are no images

of computer use in the weak image set, and therefore we do not expect the additional

weak data to improve the “using computer” action model.)

Though the dataset includes additional action classes, we only train models for

riding bicycle, riding horse, and using computer. (The entire dataset is still utilized,

however, because the other action classes serve as negative examples.) We excluded

running and walking because they do not explicitly involve objects. Furthermore, we

24
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limited our focus to the remaining action classes for which we could obtain reasonable

object detection candidates. The decision to focus on the three actions mentioned

above was thus motivated by the limitations of the object detector (discussed in the

following section).

The Pascal validation set was used for model selection. After the model parameters

were fixed, final results were produced by training on all of the PASCAL 2010 Action

training and validation data (and also the weakly labeled images, when applicable)

and evaluating on the PASCAL test set.

5.2 Object Detector

As mentioned earlier, we utilized the deformable parts object detector to generate

detection scores for objects and people. As mentioned earlier, we utilize three types

of scores from this detector – (1) the overall object detection score, (2) the aspect-

ratio-based component scores of the default model (the max of these is the overall

object detection score), and (3) the action-based component scores. Scores (1) and

(2) were obtained from the off-the-shelf person model (i.e., we did not retrain on any

additional images from the action dataset or elsewhere). Obtaining score (3) required

retraining the model with the new component initializations. This new model was

trained on the same data as the off-the-shelf model (the PASCAL Object and INRIA

datasets).

For tractability purposes, our action model considers only the top 2,000 object

candidates outputted by the object detector. The recall of this set of candidates over

ground-truth objects in the PASCAL Action training and validation set is reported

in Figure 5.1. The recall of the candidate objects set is a limiting factor on the

performance of our model, because we rely on object presence and position as a

primary cue for action recognition. We focus on action classes for which there is a

strong object context cue – namely, riding bike, riding horse, and using computer.

We hypothesize that the poor performance of the object detector on the remaining

object classes was due to discrepancies between the appearance of objects in the

datasets used to train the object detector and the appearance of objects in the Pascal
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Figure 5.1: Recall of the top 2,000 object detections outputted by the deformable
parts object detector. A data example was marked a true positive if the overlap
(intersection over union) between a detection and the ground-truth object bounding
box was greater than 0.5.

Bicycle 0.936508
Motorbike 0.952381
Horse 1.000000
Computer monitor 0.857143
Phone 0.481481
Camera 0.661290
Instrument 0.610000
Book 0.754717

Action dataset. In particular, the data used to train the object detector included

more detailed close-up shots while the objects in the Pascal Action data were often

small, especially for small object types such as phone and camera. Other object

classes were probably too generic (e.g., “musical instrument” and “book,” which

encompassed newspapers and magazines in addition to actual books), even for the

deformable parts object detector to handle. (Recall that this object detector models

each object class as a collection of more homogeneous sub-classes.)

5.3 Experiments

5.3.1 Training Set Notation

Recall that we have two sources of training data – the PASCAL Action data (train-

ing and validation set) and the set of images obtained from Google Images. These

data sources feature different levels of annotation. The raw PASCAL data is labeled

with the ground-truth action and person. Furthermore, to incorporate more detailed

information into the training procedure, we also labeled the PASCAL images with

ground-truth objects. The images from Google are labeled only with the ground-

truth action. For ease of understanding, we henceforth refer to the PASCAL Action

data (training and validation set) as the “PASCAL” set. We refer to the PASCAL
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data augmented with ground-truth object labels as the “PASCAL(Object)” set. We

refer to the set of weakly labeled images from Google Images as the “Weak” set. We

use the plus sign to denote the union of two training sets (e.g., “PASCAL+Weak”

denotes the combination of the standard PASCAL training and validation data with

the weakly labeled data).

5.3.2 Overview

To obtain a good baseline for comparison, we train a simple LSVM model whose

only feature is the object score (in a quadratic kernel). This model therefore predicts

an action label by considering only the strength of the best object detection in the

image. We trained the baseline model on both the PASCAL(Object) set and the

PASCAL(Object)+Weak set. In the former case, training is fully supervised and

there are no latent variables to impute, so the choice of CCCP versus SPL is moot

(both reduce to solving a standard SSVM). In the latter case, we use CCCP as our

baseline LSVM learning procedure.

Our full LSVM object context model was tested on a variety of datasets, using

both CCCP and SPL as learning procedures. Full results are presented in Figures 5.2

and 5.3. These results demonstrate the following points:

1. LSVM models are capable of taking advantage of additional, weakly labeled

data.

2. The additional features in the full object context model allow it to perform

better than the baseline.

3. SPL performs better than CCCP, on average.

4. SPL outperforms CCCP incrementally more when additional weakly labeled

data is added.

In the following sections, we justify the above conclusions and discuss the results in

further detail.
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Average Precision
Riding Riding Using

Model Bike Horse Computer
Baseline, PASCAL(Object) .717 .802 .332
Baseline, PASCAL(Object)+Weak, CCCP .725 .810 .292
Previous State-of-the-Art, PASCAL .810 .897 .641

PASCAL(Object) .821 .885 .475

PASCAL, CCCP .838 .790 .444
PASCAL+Weak, CCCP .828 .902 .420
PASCAL, SPL .839 .898 .414
PASCAL+Weak, SPL .861 .911 .472

Figure 5.2: Average precision on the Pascal test set for different models. Yellow
indicates the best for each action class. Cyan indicates the best of our models that
used only the Pascal training and validation data to train (i.e., no weak images).

5.3.3 Object Context Model vs. Baseline

The precision-recall curves of Figures 5.4 and 5.5 clearly demonstrate that the object

context model outperforms the baseline. This demonstrates that detecting object

presence alone is insufficient to accurately model the presence of action. Intuitively,

for example, an action model that does not consider the spatial relationship of the

object to the human cannot distinguish between a parked bike and a bike being

ridden.

Moreover, the use of such object-person spatial context features can mitigate the

impact of weak false positives outputted by the object detector. The probability of

the object detector outputting a false positive in a location that is consistent with

the corresponding action is much lower than the probability of a false positive being

detected anywhere in the image. In the case of computer monitors especially, the

detector is susceptible to misclassifying other rectangular objects, such as picture

frames and windows, as monitors. Such objects are common in everyday scenes,

but less frequently are they positioned directly next to a person’s head (the location

consistent with a monitor participating in the using computer action).

We also note that there is significant variation in the relative difficulty of the
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Baseline, PASCAL(Object)
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Figure 5.3: The results in Figure 5.2 presented graphically. The “diverse data” bars
are the max of the corresponding “PASCAL+Weak” and “PASCAL(Object)+Weak”
entries in the table.
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(b) Riding horse
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Figure 5.4: Precision vs. recall for baseline classifier, trained on both PAS-
CAL(Object) and PASCAL(Object)+Weak datasets.
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Figure 5.5: Precision vs. recall for the object context model, trained on the combi-
nation of the training and validation sets.
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(a) PASCAL (riding bike, riding horse, using computer)
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(b) PASCAL+Weak (riding bike, riding horse, using computer)

Figure 5.6: Comparison of CCCP vs. SPL in training the latent object context model
on the PASCAL and PASCAL+Weak datasets.

three action classes. We achieve higher average precision on the actions associated

with easy-to-detect objects, but achieve larger gains over the baseline for actions with
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more difficult objects. Bicycles and horses are complex objects with multiple well-

defined parts (e.g., wheels, handlebars, legs). Computer monitors, on the other hand,

are very simple rectangular objects. This simplicity makes them easily confusable with

many other simple rectangular objects such as windows, picture frames, newspapers,

and even the backs of chairs. Thus, the performance of the object detector is much

higher for bicycles and horses than monitors. This discrepancy has a large impact on

the performance of the action recognition model, which relies heavily on the object

detection. On the other hand, however, the baseline model is completely reliant on

the object detection while the object context model can overcome bad detections in

some cases for the reasons mentioned above. Thus, the improvement achieved by

using the full model is higher for the harder using-computer action class.

5.3.4 Diverse Data and SPL vs. CCCP

The performance of the baseline classifier illustrates that even a simple LSVM model

can benefit from the inclusion of additional weakly labeled data (Figure 5.4). The

results show that the use of additional weakly annotated training data improves the

baseline model on the “riding bicycle” and “riding horse” actions. The baseline

performs worse on the using computer class, but recall that the weak image set lacks

computer images, so we do not expect it to enable an improvement in this action

class.

Though it shows minor improvement with diverse data, the baseline model is too

simplistic to take full advantage of the additional training data. With the full ob-

ject context model, the gains are generally more pronounced, as we would expect for

a more sophisticated approach. Figure 5.6 compares the performance of the object

context model trained using SPL versus CCCP. For “riding horse” and “riding bike,”

we see an across-the-board improvement using self-paced learning. For “using com-

puter,” CCCP performs better with the standard PASCAL training data, but SPL

performs better with the complete set of diverse data. In fact, in the case of riding

bike and using computer, the performance of CCCP actually drops when the weakly

annotated data is included, due to convergence to a bad local optimum.
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5.3.5 Error Analysis

Qualitative analysis revealed that in many cases, the action model outputted a false

positive when the object detection was especially strong, even though the object

detecton was not located in a position consistent with the action. For example, if

there was a very strong horse detection in an image, a person in the image would likely

be labeled as riding that particular horse, even if the horse was located far away from

the person. This problem is rooted in the fact that, in our model, object detection

strength and relative spatial location are modeled as independent features. One way

to address this issue would be to introduce features that jointly capture the value of

the object detection and the relative location of the object to the person. In other

words, we could extend the shape context features to include a dimension for object

detection score. Note that this would increase the number of shape-context features

by a factor of the number of buckets associated with the object score dimension.

An alternative solution that avoids this increase in feature quantity would be to use

the original shape-context buckets, but weight the feature values by the object score

(instead of using the standard soft-indicator feature value).

We note, however, that both these solutions may ultimately hurt the overall per-

formance of the model on the PASCAL test set. This is due to the fact that there are

many images in the dataset in which multiple people are performing the same action

(e.g., a group of people riding bicycles). In these images, some people or objects are

often small in size or partially included. However, there is usually one object that is

relatively large and completely visible and in many cases the model infers that this

object partakes in multiple action instances (e.g., it infers that multiple people are

all riding the same horse). While semantically incorrect, this “error” does yield the

correct action label (see Figure 5.7).

5.4 Future Work

Our model can be directly applied to additional action classes. An obvious next

step would be to evaluate on the remaining 6 PASCAL Action classes (phoning,
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Figure 5.7: Example of an image where action is inferred correctly, but the object
location is incorrect.

playing instrument, reading, running, taking photo, walking). To enable the model

to perform well on these action classes, the quality of the object detections for the

corresponding object classes must be improved. Retraining the object detector on

an object dataset that is more representative of the level of appearance detail of

objects in the action dataset as well as increasing the bounding box search scale of the

object detector to better capture smaller objects such as phones and cameras should

significantly improve the recall of the object detector. For objectless actions such as

running and walking, the deformable parts component scores for the person detection,

which are currently incorporated as features in our action model, can provide cues

related to human pose. Additional pose features, such as the scores and locations

of individual parts in the deformable parts model (as opposed to just the score and

location of the overall person), can also be experimented with. Alternatively, pose

can be incorporated explicitly into the model as in Yao, et al. 2010 [15] and Gupta et

al. 2009 [5]. The benefits of using diverse data would become even more important in

this scenario, as a fully supervised training regime would require annotating a large

number of images with individual human parts.



Appendix A

Qualitative Results

This appendix contains selected qualitative results on the 2010 PASCAL Action test

set with models trained on different training sets with different training algorithms

(see Figure A.1). The outline of the image indicates whether the action prediction

is correct. Green denotes correct, red incorrect; a brighter color indicates greater

confidence in the prediction (i.e., an action score further away from 0). If the action

was detected, then blue boxes show the location predicted for the person and object.

Note that the person bounding box is given at inference time.

Baseline Object Context Object Context
PASCAL(Object) PASCAL PASCAL

CCCP SPL

Object Context Object Context Object Context
PASCAL(Object) PASCAL+Weak PASCAL+Weak

CCCP SPL

Figure A.1: Format of qualitative results displayed in this section. Note that training
on PASCAL(Object) is a fully supervised problem and therefore does not require an
approximate technique like CCCP or SPL

34
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Baseline
PASCAL(Object)
Score: −0.216290

PASCAL, CCCP
Score: −0.978807

PASCAL, SPL
Score: 4.153873

PASCAL(Object)
Score: 2.033677

PASCAL+Weak, CCCP
Score: 3.271145

PASCAL+Weak, SPL
Score: 3.446858

Baseline
PASCAL(Object)
Score: −0.216290

PASCAL, CCCP
Score: −0.975870

PASCAL, SPL
Score: 0.937526

PASCAL(Object)
Score: 0.372091

PASCAL+Weak, CCCP
Score: 0.348355

PASCAL+Weak, SPL
Score: 0.556367

Baseline
PASCAL(Object)
Score: −0.739181

PASCAL, CCCP
Score: −0.983399

PASCAL, SPL
Score: 1.080084

PASCAL(Object)
Score: 0.363339

PASCAL+Weak, CCCP
Score: −0.336292

PASCAL+Weak, SPL
Score: 1.062826

Baseline
PASCAL(Object)
Score: −0.817139

PASCAL, CCCP
Score: −0.987308

PASCAL, SPL
Score: 2.179703

PASCAL(Object)
Score: 0.928011

PASCAL+Weak, CCCP
Score: 0.430282

PASCAL+Weak, SPL
Score: 0.886822

Baseline
PASCAL(Object)
Score: −0.765883

PASCAL, CCCP
Score: −0.982394

PASCAL, SPL
Score: 2.513462

PASCAL(Object)
Score: 0.877366

PASCAL+Weak, CCCP
Score: 1.343630

PASCAL+Weak, SPL
Score: 2.160387

Baseline
PASCAL(Object)
Score: −0.801628

PASCAL, CCCP
Score: −0.996848

PASCAL, SPL
Score: −0.430242

PASCAL(Object)
Score: 0.020251

PASCAL+Weak, CCCP
Score: −0.148894

PASCAL+Weak, SPL
Score: 1.144067
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Baseline
PASCAL(Object)
Score: 3.087141

PASCAL, CCCP
Score: −0.819469

PASCAL, SPL
Score: 4.758886

PASCAL(Object)
Score: 3.431386

PASCAL+Weak, CCCP
Score: 4.525849

PASCAL+Weak, SPL
Score: 5.019714

Baseline
PASCAL(Object)
Score: −0.100671

PASCAL, CCCP
Score: −0.967043

PASCAL, SPL
Score: 3.932318

PASCAL(Object)
Score: 1.870171

PASCAL+Weak, CCCP
Score: 3.513284

PASCAL+Weak, SPL
Score: 3.606131

Baseline
PASCAL(Object)
Score: −0.261634

PASCAL, CCCP
Score: −0.977774

PASCAL, SPL
Score: 0.670785

PASCAL(Object)
Score: 0.084832

PASCAL+Weak, CCCP
Score: 0.318313

PASCAL+Weak, SPL
Score: 0.449417
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Baseline
PASCAL(Object)
Score: 0.042566

PASCAL, CCCP
Score: 0.236350

PASCAL, SPL
Score: 0.324690

PASCAL(Object)
Score: −0.581180

PASCAL+Weak, CCCP
Score: 0.845294

PASCAL+Weak, SPL
Score: −0.343954

Baseline
PASCAL(Object)
Score: −0.926252

PASCAL, CCCP
Score: 0.948014

PASCAL, SPL
Score: 1.102695

PASCAL(Object)
Score: 0.396494

PASCAL+Weak, CCCP
Score: 1.017927

PASCAL+Weak, SPL
Score: 0.781022

Baseline
PASCAL(Object)
Score: −0.806782

PASCAL, CCCP
Score: 0.934381

PASCAL, SPL
Score: 0.167427

PASCAL(Object)
Score: 0.121823

PASCAL+Weak, CCCP
Score: 0.352252

PASCAL+Weak, SPL
Score: −0.120662

Baseline
PASCAL(Object)
Score: −0.541695

PASCAL, CCCP
Score: 1.533867

PASCAL, SPL
Score: 1.889474

PASCAL(Object)
Score: 1.157324

PASCAL+Weak, CCCP
Score: 1.372697

PASCAL+Weak, SPL
Score: 1.130125

Baseline
PASCAL(Object)
Score: −1.000079

PASCAL, CCCP
Score: 0.211822

PASCAL, SPL
Score: −2.036922

PASCAL(Object)
Score: 0.007988

PASCAL+Weak, CCCP
Score: 0.251693

PASCAL+Weak, SPL
Score: −0.141592

Baseline
PASCAL(Object)
Score: 2.825778

PASCAL, CCCP
Score: 3.911712

PASCAL, SPL
Score: 3.575322

PASCAL(Object)
Score: 1.558534

PASCAL+Weak, CCCP
Score: 1.597914

PASCAL+Weak, SPL
Score: 2.696717
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Baseline
PASCAL(Object)
Score: −0.997621

PASCAL, CCCP
Score: 1.352738

PASCAL, SPL
Score: 1.338077

PASCAL(Object)
Score: −0.856014

PASCAL+Weak, CCCP
Score: −1.004020

PASCAL+Weak, SPL
Score: 0.453436

Baseline
PASCAL(Object)
Score: −0.984462

PASCAL, CCCP
Score: 3.088346

PASCAL, SPL
Score: 4.191919

PASCAL(Object)
Score: −0.443325

PASCAL+Weak, CCCP
Score: −0.600879

PASCAL+Weak, SPL
Score: 2.151762

Baseline
PASCAL(Object)
Score: −0.995433

PASCAL, CCCP
Score: 1.766945

PASCAL, SPL
Score: 2.443711

PASCAL(Object)
Score: −0.880569

PASCAL+Weak, CCCP
Score: −0.833452

PASCAL+Weak, SPL
Score: 1.347215

Baseline
PASCAL(Object)
Score: −0.999243

PASCAL, CCCP
Score: 1.655263

PASCAL, SPL
Score: 0.564572

PASCAL(Object)
Score: −0.913670

PASCAL+Weak, CCCP
Score: −1.008499

PASCAL+Weak, SPL
Score: 0.908217

Baseline
PASCAL(Object)
Score: −0.994624

PASCAL, CCCP
Score: 0.825880

PASCAL, SPL
Score: 2.130987

PASCAL(Object)
Score: −0.761251

PASCAL+Weak, CCCP
Score: −0.818254

PASCAL+Weak, SPL
Score: 0.954748
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